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Abstract

We are witnessing a surge of works on building and improving 3D-aware generators.1

To induce a 3D-aware bias, such models rely on volumetric rendering, which2

is expensive to employ at high resolutions. The dominant strategy to address3

the scaling issue is to train a separate 2D decoder to upsample a low-resolution4

volumetrically rendered representation. But this solution comes at a cost. Not only5

does it break multi-view consistency, e.g. shape and texture change when a camera6

moves, but it also learns the geometry in a low fidelity. In this work, we take a7

different route to 3D synthesis and develop a non-upsampler-based generator with8

state-of-the-art image quality, high-resolution geometry and which trains 2.5×9

faster. For this, we revisit and improve patch-based optimization in two ways.10

First, we design a location- and scale-aware discriminator by modulating its filters11

with a hypernetwork. Second, we modify the patch sampling strategy based on an12

annealed beta distribution to stabilize training and accelerate the convergence. We13

train on four datasets (two introduced in this work) at 2562 and 5122 resolutions,14

directly, without the need of a 2D upsampler, and our model attains better or15

comparable FID and has higher fidelity geometry than the current SotA.16

Code/data/visualizations: https://rethinking-3d-gans.github.io17

1 Introduction18

Generative models for image synthesis achieved remarkable success in recent years and enjoy a lot of19

practical applications [55, 24]. While initially they mainly focused on 2D images [21, 65, 25, 4, 28],20

recent research explored generative frameworks with partial 3D control over the underlying object21

in terms of texture/structure decomposition, novel view synthesis or lighting manipulation (e.g.,22

[58, 56, 7, 67, 6, 12, 49]). These techniques are typically built on top of the recently emerged neural23

radiance fields (NeRF) [38] to explicitly represent the object (or its latent features) in 3D space.24

NeRF is a powerful framework, which made it possible to built expressive 3D-aware generators25

from challenging RGB datasets [7, 12, 6]. Under the hood, it trains a multi-layer perceptron (MLP)26

F(x;d) = (c, σ) to represent a scene by encoding a density σ ∈ R+ for each coordinate position27

x ∈ R3 and a color value c ∈ R3 from x and view direction d ∈ S2 [38]. To synthesize an image,28

one renders each pixel independently by casting a ray r(q) = o + qd (for q ∈ R+) from origin29

o ∈ R3 into the direction d ∈ S2 and aggregating many color values along it with their corresponding30

densities. Such a representation is very expressive, but comes at a cost: rendering a single pixel is31

computationally expensive and makes it intractable to produce a lot of pixels in one forward pass. It32

is not fatal for reconstruction tasks where the loss can be robustly computed on a subset of pixels,33

but it creates significant scaling problems for generative NeRFs: they are typically formulated in a34

GAN-based framework [14] with 2D convolutional discriminators requiring a full image as input.35

People address these scaling issues of NeRF-based GANs in different ways, but the dominating36

approach is to train a separate 2D decoder to produce a high-resolution image from a low-resolution37
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Figure 1: We build a pure NeRF-based generator trained in a patch-wise fashion. Left two grids:
samples on FFHQ 5122 [25] and Cats 2562 [76]. Middle grids: interpolations between samples
on M-Plants and M-Food (upper) and corresponding geometry interpolations (lower). Right grid:
background separation examples. In contrast to the upsampler-based methods, one can naturally
incorporate the techniques from the traditional NeRF literature into our generator: for background
separation, we simply copy-pasted the corresponding code from NeRF++ [75].

image or feature grid rendered from a NeRF backbone [43]. During the past six months, there38

appeared more than a dozen of methods which follow this paradigm (e.g., [6, 15, 70, 47, 78, 35,39

74, 23, 71, 77, 63]). While using the upsampler allows to scale the model to high resolution, it40

comes with two severe limitations: 1) it breaks multi-view consistency of a generated object, i.e. its41

texture and shape change when the camera moves; and 2) the geometry gets only represented in a42

low resolution (≈643). In our work, we show that by dropping the upsampler and using a simple43

patch-wise optimization scheme, one can build a 3D generator with better image quality, faster44

training speed and without the above limitations.45

Patch-wise training of NeRF-based GANs was originally proposed by GRAF [56] and got largely46

neglected by the community since then. The idea is simple: instead of training the generative model on47

full-size images, one does this on small random crops. Since the model is coordinate-based [59, 64],48

it does not face any issues to synthesize only a subset of pixels. This serves as a good way to save49

computation for both the generator and the discriminator, since it makes both of them operate on50

patches of small spatial resolution. To make the generator learn both the texture and the structure,51

crops are sampled to be of variable scales (but having the same number of pixels): in some sense, this52

can be seen as optimizing the model on low-resolution images + high-resolution patches.53

In our work, we improve patch-wise training in two crucial ways. First, we redesign the discriminator54

by making it better suited to operating on image patches of variable scales and locations. Convolu-55

tional filters of a neural network learn to capture different patterns in their inputs depending on their56

semantic receptive fields [30, 46]. That’s why it is detrimental to reuse the same discriminator to57

judge both high-resolution local and low-resolution global patches, inducing additional burden on it to58

mix filters’ responses of different scales. To mitigate this, we propose to modulate the discriminator’s59

filters with a hypernetwork [16], that predicts which filters to suppress or reinforce from a given patch60

scale and location.61

Second, we change the random scale sampling strategy from an annealed uniform to an annealed beta62

distribution. Typically, patch scales are sampled from a uniform distribution s ∼ U [s(t), 1] [56, 36, 5],63

where the minimum scale s(t) is gradually decreased (i.e. annealed) till some iteration T from64

s(0) = 0.9 to a smaller value s(T ) (in the interval [0.125 − 0.5]) during training. This sampling65

strategy prevents learning high-frequency details early on in training and puts too little attention on the66

structure after s(t) reached its final value s(T ). This makes the overall convergence of the generator67

slower and less stable that’s why we propose to sample patch scales using the beta distribution68

Beta(1, β(t)) instead, where β(t) is gradually annealed from β(0) ≈ 0 to some maximum value69

β(T ). In this way, the model starts learning high-frequency details immediately after the training70

starts and has more focus on the structure after the growth is done. This simple change stabilizes the71

training and allows to converge faster than the typically used uniform distribution [56, 5, 36].72
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Figure 2: Illustration of the architecture and the patch sampling process. See §3 for details.

We use those two ideas to develop a novel state-of-the-art 3D GAN: Patch-wise Generative Radi-73

ance Fields (PGRF). We employ it for high-resolution 3D-aware image synthesis on four datasets:74

FFHQ [25], Cats [76], Megascans Plants and Megascans Food. The last two benchmarks are intro-75

duced in our work and contain 360◦ renderings of photo-realistic scans of different plants and food76

objects (described in §4). They are much more difficult in terms of geometry and are well suited for77

assessing the structural limitations of modern 3D-aware generators.78

Our model uses a pure NeRF-based backbone, that’s why it represents geometry in high resolution79

and does not suffer from multi-view synthesis artifacts, as opposed to upsampler-based generators.80

Moreover, it has higher or comparable image quality (as measured by FID [20]) and 2.5× lower81

training cost. Also, in contrast to upsampler-based 3D GANs, our generator can naturally incorporate82

the techniques from the traditional NeRF literature. To demonstrate this, we incorporate background83

separation into our framework by simply copy-pasting the corresponding code from NeRF++ [75].84

2 Related work85

Neural Radiance Fields. Neural Radiance Fields (NeRF) is an emerging area [38], which combines86

neural networks with volumetric rendering techniques to perform novel-view synthesis [38, 75, 2],87

image-to-scene generation [73], surface reconstruction [45, 68, 44] and other tasks [9, 17, 50]. In our88

work, we employ them in the context of 3D-aware generation from a dataset of RGB images [56, 7].89

3D generative models. A popular way to learn a 3D generative model is to train it on 3D data or in90

an autoencoder’s latent space (e.g., [10, 69, 1, 34, 31, 39, 29]). This requires explicit 3D supervision91

and there appeared methods which train from RGB datasets with segmentation masks, keypoints92

or multiple object views [13, 32, 54]. Recently, there appeared works which train from single-view93

RGB only, including mesh-generation methods [19, 72, 53] and methods that extract 3D structure94

from pretrained 2D GANs [58, 48]. And recent neural rendering advancements allowed to train95

NeRF-based generators [56, 7, 42] from purely RGB data from scratch, which became the dominating96

direction since then and which are typically formulated in the GAN-based framework [14].97

NeRF-based GANs. HoloGAN [41] generates a 3D feature voxel grid which is projected on a98

plane and then upsampled. GRAF [56] trains a noise-conditioned NeRF in an adversarial manner.99

π-GAN [7] builds upon it and uses progressive growing and hypernetwork-based [16] conditioning100

in the generator. GRAM [12] builds on top of π-GAN and samples ray points on a set of learnable101

iso-surfaces. GNeRF [36] adapts GRAF for learning a scene representation from RGB images102

without known camera parameters. GIRAFFE [43] uses a composite scene representation for better103

controllability. CAMPARI [42] learns a camera distribution and a background separation network104

with inverse sphere parametrization [75]. To mitigate the scaling issue of volumetric rendering, many105

recent works train a 2D decoder under different multi-view consistency regularizations to upsample a106

low-resolution volumetrically rendered feature grid [6, 15, 70, 47, 78, 71, 77]. However, none of such107

regularizations can currently provide the multi-view consistency of pure-NeRF-based generators.108

Patch-wise generative models. Patch-wise training had been routinely utilized to learn the textural109

component of image distribution when the global structure is provided from segmentation masks,110

sketches, latents or other sources (e.g., [22, 57, 11, 66, 52, 51, 33, 61]). Recently, there appeared111

works which sample patches at variable scales, in which way a patch can carry global information112
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Figure 3: Comparing uniform (left) and beta (middle) annealed patch scale sampling in terms of their
probability density function (PDF) (for visualization purposes, we clamp the maximum density value
to 5); (right) PDF of Beta(1, β), provided for completeness. Uniform distribution with annealed
smin(0) = 0.9 from 0.9 to smin(T ) = 0.125 does not put any attention to high-frequency details in
the beginning and treats small-scale and large-scale patches equally at the end of the annealing. Beta
distribution with annealed β(0) ≈ 0 to β(T ) ≈ 1, in contrast, lets the model learn high-resolution
texture immediately after the training starts, and puts more focus on the structure at the end.

about the whole image. Recent works use it to train a generative NeRF [56], fit a neural representation113

in an adversarial manner [36] or to train a 2D GAN on a dataset of variable resolution [5].114

3 Model115

We build upon StyleGAN2 [26], replacing its generator with the tri-plane-based NeRF model [6]116

and using its discriminator as the backbone. We train the model on r × r patches (we use r = 64117

everywhere) of random scales instead of the full images of resolution R×R. Scales s ∈ [ rR , 1] are118

randomly sampled from a time-varying distribution s ∼ pt(s).119

3.1 NeRF-based generator120

Compared to upsampler-based 3D GANs [15, 43, 71, 78, 6, 77], we use a pure NeRF [38] as our121

generator G and utilize the tri-plane representation [6, 8] as the backbone. It consists of three122

components: 1) mapping network M : z 7→ w which transforms a noise vector z ∼ R512 into123

the latent vector w ∼ R512; 2) synthesis network S : w 7→ P which takes the latent vector w124

and synthesizes three 32-dimensional feature planes P = (Pxy,Pyz,Pxz) of resolution Rp × Rp125

(i.e. P(∗) ∈ RRp×Rp×32); 3) tri-plane decoder network F : (x,P ) 7→ (c, σ) ∈ R4, which takes126

the space coordinate x ∈ R3 and tri-planes P as input and produces the RGB color c ∈ R3 and127

density value σ ∈ R+ at that point by interpolating the tri-plane features in the given coordinate and128

processing them with a tiny MLP. In contrast to classical NeRF [38], we do not utilize view direction129

conditioning since it worsens multi-view consistency [7] in GANs which are trained on RGB datasets130

with a single view per instance. To render a single pixel, we follow the classical volumetric rendering131

pipeline with hierarchical sampling [38, 7], using 48 ray steps in coarse and 48 ones in fine sampling132

stages. See the accompanying source code for more details.133

3.2 Scale/location-aware discriminator134

Our discriminator D is built on top of StyleGAN2 [26]. Since we train the model in a patch-wise135

fashion, the original backbone is not well suited for this: convolutional filters are forced to adapt136

to signals of very different scales and extracted from different locations. A natural way to resolve137

this problem is to use separate discriminators depending on the scale, but that strategy has three138

limitations: 1) each particular discriminator receives less overall training signal (since the batch size139

is limited); 2) from an engineering perspective, it is more expensive to evaluate a convolutional kernel140

with different parameters on different inputs; 3) one can use only a small fixed amount of possible141

patch scales. This is why we develop a novel hypernetwork-modulated [16] discriminator architecture142

to operate on patches with continuously varying scale.143

To modulate the convolutional kernels of D, we define a hypernetwork H : (s, δx, δy) :7→ (σ1, ...,σL)144

as a 2-layer MLP with tanh non-linearity at the end which takes patch scale s and its cropping offsets145

δx, δy as input and produces modulations σℓ ∈ (0, 2)c
ℓ
out (we shift the tanh output by 1 to map into146
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Figure 4: Comparing samples of PGRF and current 3D-aware generators. Our method attains state-
of-the-art image quality, recovers high-fidelity geometry and preserves multi-view consistency for
both simple-shape (FFHQ and Cats) and variable-shape (M-Plants and M-Food) datasets. We refer
the reader to the supplementary for the video comparisons to evaluate multi-view consistency.

the 1-centered interval), where cℓout is the number of output channels in the ℓ-th convolutional layer.147

Given a convolutional kernel W ℓ ∈ Rcℓout×cℓin×k×k and input x ∈ Rcin , a straightforward strategy148

to apply the modulation is to multiply σ on the weights (depicting the convolution operation by149

conv2d(.) and omitting its other parameters for simplicity):150

y = conv2d(W ℓ ⊙ σ,x), (1)

where we broadcast the remaining axes and y ∈ Rcout is the layer output (before the non-linearity).151

However, using different kernel weights on top of different inputs is not too efficient in modern152

deep learning frameworks (even with the group-wise convolution trick [26]), that’s why we use an153

equivalent strategy by multiplying the weights on y instead:154

y = σ ⊙ conv2d(W ℓ,x). (2)

This suppresses and reinforces different convolutional filters of the layer depending on the patch155

scale and location. And to incorporate an even stronger conditioning, we also use the projection156

strategy [40] from StyleGAN2-ADA [24]. We depict our discriminator architecture in Fig 2. As we157

show in Tab 2, it allows to obtain ≈15% lower FID compared to the standard discriminator.158

3.3 Patch-wise optimization with Beta-distributed scales159

Training NeRF-based GANs is computationally expensive, because rendering each pixel via vol-160

umetric rendering requires many evaluations (e.g., in our case, 96) of the underlying MLP. For161
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scene reconstruction tasks, it does not create issues since the typically used L2 loss [38, 75, 68]162

can be robustly computed on a sparse subset of the pixels. But for NeRF-based GANs, it becomes163

prohibitively expensive for high resolutions since convolutional discriminators operate on dense164

full-size images. The currently dominating approach to mitigate this is to train a separate 2D decoder165

to upsample a low-resolution image representation, rendered from a NeRF-based MLP. But this166

breaks multi-view consistency (i.e. object’s shape and texture change when the camera is moving)167

and learns the 3D geometry in a low resolution (from ≈162 [71] to ≈1282 [6]). This is why we build168

upon the multi-scale patch-wise training scheme [56] and demonstrate that it can give state-of-the-art169

image quality and training speed without the above limitations.170

Patch-wise optimization works the following way. On each iteration, instead of passing the full-size171

R × R image to D, we instead input only a small patch with resolution r × r of random scale172

s ∈ [r/R, 1] and extracted with a random offset (δx, δy) ∈ [0, 1− s]2. We illustrate this procedure in173

Fig 2. Patch parameters are sampled from distribution:174

s, δx, δy ∼ pt(s, δx, δy) ≜ pt(s)p(δx|s)p(δy|s) (3)

where t is the current training iteration. In this way, patch scales depend on the current training175

iteration t and offsets are sampled independently after we know s. As we show next, the choice of176

distribution pt(s) has crucial influence on the learning speed and stability.177

Typically, patch scales are sampled from the annealed uniform distribution [56, 36, 5] s:178

pt(s) = U [smin(t), 1], smin(t) = lerp [1, r/R,min(t/T, 1)] , (4)

where lerp is the linear interpolation function1, and the left interval bound smin(t) is gradually179

annealed during the first T iterations until it reaches the minimum possible value of r/R.2 But this180

strategy does not let the model learn high-frequency details early on in training and puts little focus on181

the structure when smin(t) is fully annealed to r/R (which is usually very small, e.g. r/R = 0.125182

for a typical 642 patch-wise training on 5122 resolution). As we show, the first issue makes the183

generator converge slower, and the second one makes the overall optimization less stable.184

To mitigate this, we propose a small change in the pipeline by simply replacing the uniform scale185

sampling distribution with:186

s ∼ Beta(1, β(t)) · (1− r/R) + r/R, (5)

where β(t) is gradually annealed from β(0) to some final value β(T ). Using beta distribution instead187

of the uniform one gives a very convenient knob to shift the training focus between large patch scales188

s → 1 (carrying the global information about the whole image) and small patch scales r → r/R189

(representing high-resolution local crops).190

A natural way to do the annealing is to anneal from 0 to 1: at the start, the model focuses entirely on191

the structure, while at the end it transforms into the uniform distribution (See Fig 3). We follow this192

strategy, but from the design perspective instead set β(T ) to a value, which is slightly smaller than193

1 (we use β(T ) = 0.8 everywhere) to keep more focus on the structure at the end of the annealing194

as well. In our initial experiments, we observed that β(T ) ∈ [0.7, 1] perform similarly. The scales195

distributions comparison between beta and uniform sampling is provided in Fig 3 and the convergence196

comparison in Fig 6.197

3.4 Training details198

We inherit the training procedure from StyleGAN2-ADA [24] with minimal changes. The optimiza-199

tion is performed by Adam [27] with learning rate of 0.002 and betas of 0 and 0.99 for both G and200

D. We use β(T ) = 0.8 for T = 10000, z ∼ N (0, I) and set Rp = 512. D is trained with R1201

regularization [37] with γ = 0.05. We train with the overall batch size of 64 for ≈15M images202

seen by D for 2562 resolution and ≈20M for 5122. Similar to previous works [6, 12], we use pose203

supervision for D for the FFHQ and Cats dataset to avoid geometry ambiguity. We train G in full204

precision and use mixed precision for D. Further details can be found in the source code.205
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Table 1: FID scores for recent 3D GANs. “†” — evaluated on a re-aligned version of FFHQ (different
from original FFHQ [25]). Training cost is measured as the amount of NVidia V100 GPU days. In
contrast to the existing upsampler-based generators or GRAM [12], our model does not have any
geometry constraints, trains in 2− 3× less time and attains state-of-the-art image quality. Note that
all those methods (except for π-GAN), appeared (on arxiv, some are not in the proceedings yet)
during the past ≈6 months. “OOM” denotes out-of-memory error.

Method FFHQ Cats M-Plants M-Food Training cost Geometry constraints
2562 5122 2562 2562 2562 2562 5122

StyleNeRF [15] 8.00 7.8 27.91 19.32 16.75 40 56 322-res + 2D upsampler
StyleSDF [47] 11.5 11.19 – – – 42 56 642-res + 2D upsampler
EG3D [6] 4.8† 4.7† – – – N/A 76 1282-res + 2D upsampler
VolumeGAN [70] 9.1 – – – – N/A N/A 642-res + 2D upsampler
MVCGAN [77] 13.7 13.4 39.16 31.70 29.29 42 64 642-res + 2D upsampler
GIRAFFE-HD [71] 11.93 – 12.36 – – N/A N/A 162-res + 2D upsampler

pi-GAN [7] 53.2 OOM 68.28 46.72 51.99 56 ∞ none
GRAM [12] 13.78 OOM 13.40 211.7 248.3 56 ∞ iso-surfaces
PGRF (ours) 9.71 9.92 6.93 19.42 18.15 16 24 none

pi-GAN MVC-GAN Ours

Figure 5: Visualizing the learned geometry for different methods. π-GAN [7] recovers high-fidelity
shapes, but has worse image quality (see Table 1) and is much more expensive to train than our
model. MVC-GAN [77] fails to capture good geometry because of the 2D upsampler. Our method
learns proper geometry and achieves state-of-the-art image quality. We extracted the surfaces using
marching cubes from the density fields sampled on 2563 grid and visualized them in PyVista [62]. We
manually optimized the marching cubes contouring threshold for each checkpoint of each method.

4 Experiments206

4.1 Experimental setup207

Benchmarks. In our study, we consider four benchmarks: 1) FFHQ [25] in 2562 and 5122 resolutions,208

consisting of 70,000 (mostly front-view) human face images; 2) Cats 2562 [76], consisting of 9,998209

(mostly front-view) cat face images; 3) Megascans Food (M-Food) 2562 consisting of 199 models210

of different food items with 128 views per model (25472 images in total); and 4) Megascans Plants211

(M-Plants) 2562 consisting of 1108 different plant models with 128 views per model (141824 images212

in total). The last two datasets are introduced in our work to fix two issues with the modern 3D213

generation benchmarks. First, existing benchmarks have low variability of global object geometry,214

1lerp(x, y, α) = (1− α) · x+ α · y for x, y ∈ R and α ∈ [0, 1].
2In practice, those methods use a very slightly different distribution (see Appx B)
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focusing entirely on a single class of objects, like human/cat faces or cars, that do not vary much from215

instance to instance. Second, they all have limited camera pose distribution: for example, FFHQ [25]216

and Cats [76] are completely dominated by the frontal and near-frontal views (see Appx D). That’s217

why we obtain and render 1307 Megascans models from Quixel, which are photo-realistic (barely218

distinguishable from real) scans of real-life objects with extremely difficult geometry (especially219

plants). To have a rich pose coverage we produced 128 views for each model, rendered from a fixed220

distance to the object center from uniformly sampled points on the entire sphere (even from below).221

Those benchmarks, together with the rendering code, will be made publicly available.222

Metrics. We use FID [20] to measure image quality and also estimate the training cost for each223

method in terms of NVidia V100 GPU days needed for it to complete the training process.224

Baselines. For upsampler-based baselines, we compare to the following generators: StyleNeRF [15],225

StyleSDF [47], EG3D [6], VolumeGAN [70], MVCGAN [77] and GIRAFFE-HD [71]. Apart from226

that, we also compare to pi-GAN [7] and GRAM [12], which are non-upsampler-based GANs. To227

compare on Megascans, we train StyleNeRF, MVCGAN, pi-GAN, and GRAM from scratch using228

their official code repositories (obtained online or requested from the authors), using their FFHQ or229

CARLA hyperparameters, except for the camera distribution and rendering settings. We also train230

StyleNeRF, MVCGAN and π-GAN on Cats 2562. GRAM [12] restricts the sampling space to a231

set of learnable iso-surfaces which makes it not well-suited for datasets with varying geometry. To232

optimize its hyperparameters for Megascans, we varied the number of surfaces (24 and 48), field of233

view (30 and 12) and batch size (16 and 32), but it was diverging for us in each case.234

4.2 Results235

PGRF achieves state-of-the-art image quality. For Cats 2562, M-Plants 2562 and M-Food 2562,236

PGRF outperforms all the baselines in terms of FID except for StyleNeRF, performing very similar237

to it on M-Plants and M-Food, but greatly surpassing it on Cats. For FFHQ, our model attains238

very similar FID scores as the other methods, ranking 4/9 (including older π-GAN [7]), noticeably239

losing only to EG3D [6], which trains and evaluates on a different version of FFHQ and uses pose240

conditioning in the generator (which potentially improves FID at the cost of multi-view consistency).241

We provide a visual comparison for different methods in Fig 4.242

PGRF is much faster to train. As reported in Tab 1, existing methods typically train for ≈1 week on243

8 V100s, PGRF finishes training in just 2 days for 2562 and 3 days for 5122 resolutions, which is244

2 − 3× faster. Note that this high training efficiency is achieved without the use of an upsampler,245

which initially enabled high-resolution synthesis of 3D-aware GANs. As to the non-upsampler246

methods, we couldn’t train GRAM or π-GAN on 5122 resolution due to the memory limitations of247

the setup with 8 NVidia V100 32GB GPUs (i.e., 256GB of GPU memory in total).248

PGRF learns high-fidelity geometry. Using a pure NeRF-based backbone carries two crucial benefits:249

it provides multi-view consistency and allows to learn the geometry in the full dataset resolution. In250

Fig 5, we visualize the learned shapes on M-Food and M-Plants for 1) π-GAN: a pure NeRF-based251

generator without the geometry constraints; 2) MVC-GAN [77]: an upsampler-based generator with252

strong multi-view consistency regularization; 3) our model. We provide the details and analysis in253

the caption of Fig 5.254

PGRF easily capitalizes on techniques from the NeRF literature. Since our generator is purely NeRF255

based and renders images without a 2D upsampler, it is well coupled with the existing techniques from256

the NeRF scene reconstruction field. To demonstrate this, we adopted background separation from257

NeRF++ [75] using the inverse sphere parametrization by simply copy-pasting the corresponding258

code from their repo. We depict the results in Fig 1 and provide the details in Appx B.259

4.3 Ablations260

We report the ablations for different discriminator architectures and patch sizes on FFHQ 5122261

and M-Plants 2562 in Tab 2. Using a traditional discriminator architecture results in ≈15% worse262

performance. Using several ones (via the group-wise convolution trick [26]) results in noticeably263

slower training time and degrades the image quality a lot. We hypothesize that the reason of it was264

the reduced overall training signal which each discriminator receives, which we tried to alleviate by265

increasing the learning rate for them, but that did not improve the results. A too small patch size266
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Figure 7: Visualizing modulation weights σ, predicted by H for 2-nd, 6-th, 10-th and 14-th convolu-
tional layers. Each subplot denotes a separate layer and we visualize random 32 filters for it.

hampers the learning process and results in a ≈80% worse FID. A too large one provides decent267

image quality, but greatly reduces the training speed.268

To assess the convergence of our proposed patch sampling scheme, we compared against uniform269

sampling on Cats 2562 for T ∈ {1000, 5000, 10000}, representing different annealing speeds. We270

show the results for it in Fig 6: our proposed beta scale sampling strategy with T = 10k schedule271

robustly converges to lower values than the uniform one with T = 5k or T = 10k and does not272

fluctuate much compared to the T = 1k uniform one (where the model reached its final annealing273

stage in just 1k kilo-images seen by D).274

To analyze how hyper-modulation manipulates the convolutional filters of the discriminator, we275

visualize the modulation weights σ, predicted by H, in Fig 7 (see the caption for the details). These276

visualizations show that some of the filters are always switched on, regardless of the patch scale;277

while others are always switched off providing potential room for pruning [18]. And ≈40% of the278

filters are getting switched on and off depending on the patch scale, which shows that H indeed learns279

to perform meaningful modulation.280
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FI
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[uniform] T = 10k
[uniform] T = 1k
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Figure 6: Convergence com-
parison on Cats 2562 for
PGRF between uniform and
beta scale sampling strategies
in terms of log-FID measured
on 2048 fake images.

Experiment FFHQ 5122 M-Plants 2562 Training cost

Discriminator
– standard 11.57 21.77 24
– 2 scale-specific D-s 10.87 21.02 28
– 4 scale-specific D-s 21.56 43.11 28
– scale/position-aware D 9.92 19.42 24

Patch size
– 322 17.44 34.32 19
– 642 (default) 9.92 19.42 24
– 1282 11.36 18.90 34

Table 2: Ablating the patch size and the discriminator architecture
for our model in terms of FID scores and training cost (V100 GPU
days) on 5122 resolution.

281

5 Conclusion282

In this work, we showed that it is possible to build a state-of-the-art 3D GAN framework without a283

2D upsampler, but using a pure NeRF-based generator trained in a multi-scale patch-wise fashion.284

For this, we improved the traditional patch-wise training scheme in two important ways. First,285

we proposed to use a scale/location-aware discriminator with convolutional filters modulated by a286

hypernetwork depending on the patch parameters. Second, we developed a schedule for patch scale287

sampling based on the beta distribution, that leads to faster and more robust convergence. We believe288

that the future of 3D GANs is a combination of efficient volumetric representations, regularized 2D289

upsamplers, and patch-wise training. We propose this avenue of research for future work.290

Our method also has several limitations. Before switching to training 3D-aware generators, we291

spent a considerable amount of time exploring our ideas on top of StyleGAN2 for traditional 2D292

generation. This always resulted in increased FID scores (see Appx A). Further, the discriminator293

looses information about global context. We tried multiple ideas to incorporate global context, but it294

did not lead to an improvement. Finally, 3D GANs generating faces and humans may have negative295

societal impact as discussed in Appx G.296
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A Limitations524

Multi-scale patch-wise training, studied in this work, has both practical and theoretical limitations.525

The practical ones include “engineering” difficulties when trying to squeeze the best performance,526

and theoretical ones are related to the issues which could be faced in asymptotic cases.527

A.1 Practical limitations528

Performance drop for 2D generation. Before switching to training 3D-aware generators, we spent529

a considerable amount of time, exploring our ideas on top of StyleGAN2 [24] for traditional 2D530

generation since it is faster, less error-prone and more robust to a hyperparameters choice. What we531

observed is that despite our best efforts (see C) and even with longer training, we couldn’t obtain the532

same image quality as the full resolution StyleGAN2 generator.533

Table 3: Trying to train a traditional StyleGAN2 [26] generator in the patch-wise fashion. We tried to
train longer to compensate for a smaller learning signal overall (a 642 patch is 1/64 of information
compared to a 5122 image), but this didn’t allow to catch up. Note, however, that AnyResGAN [5]
reaches SotA when training on 2562 patches compared to 10242 images.

Method FFHQ 5122 LSUN Bedroom 2562

FID Training cost FID Training cost

StyleGAN2-ADA [24] 3.83 8 4.12 5
+ multi-scale 642 patch-wise training 7.11 6 6.73 4
+ ×2 longer training 5.71 12 5.42 8
+ ×4 longer training 4.76 24 4.31 16

A range of possible patch sizes is restricted. Tab 2 shows the performance drop when using the534

322 patch size instead of the default 642 one without any dramatic improvement in speed. Trying to535

decrease it further would produce even worse performance (imagine training in the extreme case of536

22 patches). Increasing the patch size is also not desirable since it decreases the training speed a lot:537

going from 642 to 1282 resulted in 30% cost increase without clear performance benefits. In this way,538

we are very constrained in what patch size one can use.539

Discriminator does not see the global context. When the discriminator classifies patches of small540

scale, it is forced to do so without relying on the global image information, which could be useful541

for this. Our attempts to incorporate it (see Appx C) did not improve the performance (though we542

believe we under-explored this).543

A.2 Theoretical limitations544

Multi-scale patch-wise training is not theoretically equivalent to full-resolution training. Imagine545

that we have a distribution p(x) for x ∈ RR×R, where we consider images to be single-channel (for546

simplicity) and R is the image size. If we train with patch size of r, then each optimization step uses547

random r × r pixels out of R ×R, i.e. we optimize over the distribution of all possible marginals548

p(xp) where xp = e(x; ξ) ∈ Rr×r is an image patch and e(x, ξ) is a patch extraction function with549

random seed ξ.3 This means that our minimax objective becomes:550

min
G

max
D

Ep(xp)[logD(xp)] + Ep(z),p(ξ)[log(1− D(e(G(z), ξ)))] (6)

If we rely on the GAN convergence theorem [14], stating that we recover the training distribution551

as the solution of the minimax problem, then G will learn to approximate all the possible marginal552

distributions p(xp) instead of the full joint distribution p(x), that we seek.553

3For brevity, we “hide” all the randomness of the patch extraction process into ξ.
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B Training details554

B.1 Hyper-parameters and optimization details555

We inherit most of the hyperparameters from the StyleGAN2-ADA repo [24] repo which we build556

on top4. In this way, we use the dimensionalities of 512 for both z and w. The mapping network557

has 2 layers of dimensionality 512 with LeakyReLU non-linearities with the negative slope of −0.2.558

Synthesis network S produced three 5122 planes of 32 channels each. We use the SoftPlus non-559

linearity instead of typically used ReLU [38] as a way to clamp the volumetric density. Similar to560

π-GAN, we also randomize561

For FFHQ and Cats, we also use camera conditioning in D. For this, we encode yaw and pitch angles562

(roll is always set to 0) with Fourier positional encoding [59, 64], apply dropout with 0.5 probability563

(otherwise, D can start judging generations from 3D biases in the dataset, hurting the image quality),564

pass through a 2-layer MLP with LeakyReLU activations to obtain a 512-dimensional vector, which565

is finally as a projection conditioning [40]. Cameras positions were extracted in the same way as in566

GRAM [12].567

We optimize both G and D with the batch size of 64 until D sees 25,000,000 real images, which is568

the default setting from StyleGAN2-ADA. We the default setup of adaptive augmentations, except569

for random horizontal flipping, since it would require the corresponding change in the yaw angle570

at augmentation time, which was not convenient to incorporate from the engineering perspective.571

Instead, random horizontal flipping is used non-adaptively as a dataset mirroring where flipping the572

yaw angles it more accessible. We train G in full precision, while D uses mixed precision.573

Hypernetwork H is structured very similar to the generator’s mapping network. It consists on 2 layers574

with LeakyReLU non-linearities with the negative slope of −0.2. Its input is the positional embedding575

of the patch scales and offsets s, δx, δy , encoded with Fourier features [59, 64] and concatenated into576

a single vector of dimensionality 828. It produces a patch representation vector p ∈ R512, which is577

then adapted for each convolutional layer via:578

σ = tanh(Wℓp+ bℓ) + 1, (7)

where σ ∈ [0, 2]c
ℓ
out is the modulation vector, (Wℓ, bℓ) is the layer-specific affine transformation, cℓout579

is the amount of output filters in the ℓ-th layer. In this way, H has layer-specific adapters.580

For the background separation experiment, we adapt the neural representation MLP from INR-581

GAN [60], but passing 4 coordinates (for the inverse sphere parametrization [75]) instead of 2 as an582

input. It consists on 2 blocks with 2 linear layers each. We use 16 steps per ray for the background583

without hierarchical sampling.584

Further details could be found in the accompanying source code.585

B.2 Utilized computational resources586

While developing our model, we had been launching experiments on 4× NVidia A100 81GB or587

Nvidia V100 32GB GPUs with the AMD EPYC 7713P 64-Core processor. We found that in practice,588

running the model on A100s gives a 2× speed-up compared to V100s due to the possibility of589

increasing the batch size from 32 to 64. In this way, training PGRF on 4× A100s gives the same590

training speed as training it 8× V100s.591

For the baselines, we were running them on 4-8× V100s GPUs as was specified by the original592

papers unless the model could fit into 4 V100s without decreasing the batch size (it was only possible593

for StyleNeRF [15]).594

For rendering Megascans, we used 4× NVIDIA TITAN RTX with 24GB memory each. But resource595

utilization for rendering is negligible compared to training the generators.596

In total, the project consumed ≈4 A100s GPU-years, ≈4 V100s GPU-years, and ≈20 TITAN RTX597

GPU-days. Note, that out of this time, training the baselines consumed ≈1.5 V100s GPU-years.598

4https://github.com/NVlabs/stylegan2-ada-pytorch
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B.3 Annealing schedule details599

As being said in §3.3, the existing multi-scale patch-wise generators [56, 36] use uniform distribution600

U [smin(t), 1] to sample patch scales, where smin(t) is gradually annealed during training from 0.9601

(or 0.8 [36]) to r/R with different speeds. We visualize the annealing schedule for both GRAF602

and GNeRF on Fig 8, which demonstrates that their schedules are very close to lerp-based one,603

described in §3.3.604
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Figure 8: Comparing annealing schedules for GRAF [56], GNeRF [36] and the lerp-based schedule
from §3.3. We simplified the exposition by stating that GRAF and GNeRF use the lerp-based
schedule, which is very close to reality.

C Failed experiments605

Modern GANs are a lot of engineering and it often takes a lot of futile experiments to get to a point606

where the obtained performance is acceptable. We want to enumerate some experiments which did607

not work out (despite looking like they should work) — either because the idea was fundamentally608

flawed on its own or because we’ve under-explored it (or both).609

Conditioning D on global context worsened the performance. In Appx A, we argued that when D610

processes a small-scale patch, it does not have access to the global image information, which might611

be a source of decreased image quality. We tried several strategies to compensate for this. Our first612

attempt was to generate a low-resolution image, bilinearly upsample it to the target size, and then613

“grid paste” a high-resolution patch into it. The second attempt was to simply always concatenating614

a low-resolution version of an image as 3 additional channels. However, in both cases, generator615

learned to produce low-resolution version of images well, but the texture was poor. We hypothesize616

that it was due to D starting to produce its prediction almost entirely based on the low-resolution617

image, ignoring the high-resolution patches since they are harder to discriminate.618

Patch importance sampling did not work. Almost all the datasets used for 3D-aware image619

synthesis has regions of difficult content and regions with simpler content — it is especially noticeable620

for CARLA [56] and our Megascans datasets, which contain a lot of white background. That’s why,621

patch-wise sampling could be improved if we sample patches from the more difficult regions more622

frequently. We tried this strategy in the GNeRF [36] problem setup on the NeRF-Synthetic dataset [38]623

of fitting a scene without known camera parameters. We sampled patches from regions with high624

average gradient norm more frequently. For some scenes, it helped, for other ones, it worsened the625

performance.626

View direction conditioning breaks multi-view consistency. Similar to the prior works [56, 7],627

our attempt to condition the radiance (but not density) MLP on ray direction (similar to NeRF [38])628

led to poor multi-view consistency with radiance changing with camera moving. We tested this629

on FFHQ [25], which has only a single view per object instance and suspect that it wouldn’t be630

happening on Megascans, where view coverage is very rich.631

Tri-planes produced from convolutional layers are much harder to optimize for reconstruction.632

While debugging our tri-plane representation, we found that tri-planes produced with convolutional633

layers are extremely difficult to optimize for reconstruction. I.e., if one fits a 3D scene while634
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optimizing tri-planes directly, then everything goes smoothly, but when those tri-plane are being635

produced by the synthesis network of StyleGAN2 [26], then PNSR scores (and the loss values) are636

plateauing very soon.637

D Datasets details638

D.1 Megascans dataset639

Modern 3D-aware image synthesis benchmarks has two issues: 1) they contain objects of very similar640

global geometry (like, human or cat faces, cars and chairs), and 2) they have poor camera coverage.641

Moreover, some of them (e.g., FFHQ), contain 3D-biases, when an object features (e.g., smiling642

probability, gaze direction, posture or haircut) correlate with the camera position [6]. As a result, this643

does not allow to evaluate a model’s ability to represent the underlying geometry and makes it harder644

understand whether performance come from methodological changes or better data preprocessing.645

To mitigate these issues, we introduce two new datasets: Megascans Plants (M-Plants) and Megascans646

Food (M-Food). To build them, we obtain ≈1, 500 models from Quixel Megascans5 from Plants,647

Mushrooms and Food categories. Megascans are very high-quality scans of real objects which are648

almost indistinguishable from real. For Mushrooms and Plants, we merge them into the same Food649

category since they have too few models on their own.650

We render all the models in Blender [3] with cameras, distributed uniformly at random over the651

sphere of radius 3.5 and field-of-view of π/4. While rendering, we scale each model into [−1, 1]3652

cube and discard those models, which has the dimension produce of less than 2. We render 128653

views per object. For M-Plants, we additionally remove those models which has less than 0.03 pixel654

intensity on average (computed as the mean alpha value over the pixels and views). This is needed to655

remove small grass or leaves which will be occupying a too small amount of pixels. As a result, this656

procedure produces 1,108 models for the Plants category and 199 models for the Food category.657

We include the rendering script as a part of the released source code. We cannot release the source658

models or textures due to the copyright restrictions. We release all the images under the CC BY-NC-659

SA 4.0 license6. Apart from the images, we also release the class categories for both M-Plants and660

M-Food.661

The released datasets does not contain any personally identifiable information or offensive content662

since it does not have any human subjects, animals or other creatures with scientifically proved663

cognitive abilities. One concern that might arise is the inclusion of Amanita muscaria7 into the664

Megascans Food dataset, which is poisonous (when consumed by ingestion without any specific665

preparation). This is why we urge the reader not to treat the included objects as edible items, even666

though they are a part of the “food” category. We provide random samples from both of them in Fig 9667

and Fig 10. Note that they are almost indistinguishable from real objects.668

D.2 Datasets statistics669

We provide the datasets statistics in Tab 4. For CARLA [56], we provide them for comparison and do670

not use this dataset as a benchmark since it is small, has simple geometry and texture.671

E Additional samples672

We provide random non-cherry-picked samples from our model in Fig 12, but we recommend visiting673

the website for video illustrations: https://rethinking-3d-gans.github.io.674

F Potential negative societal impacts675

Our developed method is in the general family of media synthesis algorithms, that could be used for676

automatized creation and manipulation of different types of media content, like images, videos or 3D677

5https://quixel.com/megascans
6https://creativecommons.org/licenses/by-nc-sa/4.0
7https://en.wikipedia.org/wiki/Amanita_muscaria
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Figure 9: Real images from the Megascans Plants dataset. This dataset contains very complex
geometry and texture, while having good camera coverage.

Figure 10: Real images from the Megascans Food dataset. Caution: some objects in this dataset
could be poisonous.
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Figure 11: Comparing yaw/pitch angles distribution for different datasets.
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Table 4: Comparing 3D datasets. Megascans Plants and Megascans Food are much more complex
in terms of geometry and has much better camera coverage than FFHQ [25] or Cats [76]. The
abbreviation “USphere(µ, ζ)” denotes uniform distribution on a sphere (see π-GAN [7]) with mean µ
and pitch interval of [µ− ζ, µ+ ζ]. For Cats, the final resolution depends on the cropping and we
report the original dataset resolution.

Dataset Number of images Yaw distribution Pitch distribution Resolution

FFHQ [25] 70,000 Normal(0, 0.3) Normal(π/2, 0.2) 10242

Cats 10,000 Normal(0, 0.2) Normal(π/2, 0.2) ≈604× 520
CARLA 10,000 USphere(0, π) USphere(π/4, π/4) 5122

M-Plants 141,824 USphere(0, π) USphere(π/2, π/2) 10242

M-Food 25,472 USphere(0, π) USphere(π/2, π/2) 10242

(a) FFHQ 5122 [25]. (b) Cats 2562 [76] (c) Megascans Plants 2562 (d) Megascans Food 2562

Figure 12: Random samples (without any cherry-picking) for our model. Zoom-in is recommended.

scenes. Of particular concern is creation of deepfakes8 — photo-realistic replacing of one person’s678

identity with another one in images and videos. While our model does not yet rich good enough679

quality to have perceptually indistinguishable generations from real media, such concerns should be680

kept in mind when developing this technology further.681

G Ethical concerns682

We have reviewed the ethics guidelines9 and confirm that our work complies with them. As being683

discussed in Appx D.1, our released datasets are not human-derived and hence do not contain any684

personally identifiable information and are not biased against any groups of people.685

8https://en.wikipedia.org/wiki/Deepfake
9https://nips.cc/public/EthicsGuidelines
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